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1-Introduction:

In the past decades, climate events have become more abnormal. Such
abnormal climate phenomena as severe droughts and unusual storms can result
in land degradation and soil salinization (Zhang, L, 2008). However, the
processes behind these emerging geo-hazards induced by abnormal climate
conditions have not been quite understood. Climate is a considerably compound
issue, in order to the earth atmosphere interaction which extremely different
over the place, time and eventually inspire a special type of climate at a specific
location (Hossam Ismael, 2015). It has been recognized as a soil forming factor
for many years. Furthermore, the climate is the most significant factor affecting
the soil, its development and its problems, specifically in hyper dry lands such
Kharga Oasis in the Western Desert of Egypt. Among the significant
consequences resulting from prevailing climate conditions in arid and semiarid
lands, ranks soil salinity and land degradation.
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Soil salinity is a major concern in the arid and semi-arid regions of the
world and considered an environmental menace (Metternich and Zinck, 2003;
Shrestha et al, 2005b; Kumar et al., 2018; Abdelgadir et al, 2019). It had become
a major environmental issue. Nearly, 800 million hectares of land worldwide,
more than 6 % of the overall surface area is affected by salinization processes
(Rattan Lal et al, 2014). Moreover, climate change is exacerbating the
deterioration of arable land in arid and semi-arid regions. Especially over dry
land areas, soil salinization is more likely to occur because of harsh climatic
conditions and irrational irrigation practices (Fan, X et al., 2016).

Albeit, Salinization is a subtle natural hazard that results from lower
levels of precipitations than what is considered normal. It must be considered a
relative rather than an absolute condition. Soil Salinization is local in extent and
each region has specific climatic characteristics. This phenomenon is
progressing rapidly in the world and concerns a fifth of irrigated land (Kallel, A
etal, 2017).

The present study tried to discuss the prevailing climate conditions on
soil salinity of Kharga Oasis in Egypt based to K&ppen’s climatic classification
along with the spatial and inter-seasonal variations of air temperature and soil
temperature. In this paper, analyses on the soil salinity caused by prevailing
climatic conditions are studied by means of studying, detecting and monitoring
soil salinity of Kharga Oasis based on Landsat 8 OLI satellite and climate time
series.

Increasing the number of studies on identifying and monitoring soil
salinity indicates the prevailing benefit in conserving soil productivity and
mitigating the negative effects of salinization. The efficiency of using satellite
images data and GIS for monitoring soil salinity has been set in several previous
studies to be the most resourceful. Specific findings including experienced and
new mapping techniques, sensing techniques, satellite data, and figure out of
salinity for each case study are summarized in (Table 1).

The modern generation of polar-orbiting sun-synchronous multispectral
RS data has newly become applicable. Multispectral sensors such as Landsat,
SPOT, ASTER, IKONOS, MODIS, and IRS series have provided many
opportunities of monitoring and mapping soil salinity since 1990 (Allbed and
Kumar, 2014). Landsat 8 Operational Land Imager (OLI) has been widely used
for an improved global environment and security monitoring at the medium
resolution (30 m), especially for soil salinity assessment (Tran et al., 2019;
Wulder et al., 2019).
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The essential objectives of the present study are to Detecting soil salinity
in Kharga Oasis using Landsat 8 OLI satellite and time-series data (1940-2018),
analyze the effectiveness of using regression analysis between spectral
information and salinity values to model the extent of soil salinization along
with Kharga Oasis in the Western Desert of Egypt as one of the promising
regions for agricultural development in the country. To achieve that objective,
soil salinity indices were applied to the Landsat 8 (OLI) data with truth ground
data measurements to validate the percentage of prediction accuracy based on
different error assessment path.

Finally, temporal variations in soil salinity and the motivating forces
behind were determined based on the retrievals. The limitation to this
methodology is the spatial resolution of the Landsat-8 OLI (30 m) and the
fundamental difficulty in detecting low levels of surface soil salinity, however,
this study examines the suitability of multiple spectral bands in detecting salinity
in a regional basis. The aim of the current study was to assess the level of
salinity in Kharga oasis through the application of salt indices and developing
different salinity mapping by using a satellite image from the Landsat-8
Operational Land Imager (OLI) during July 2018.

(Table 1) The recent studies preferred to utilize RS technology in comparison to
other tools for monitoring soil salinity within 2015-2018

Publi Clima
Stud te | Satellit : : Reason of | Refere
shed Hy : ! Analysis/ Mapping Methods .
Area | Regi | e Data salinity nce
Year
me
Disturbance
BSk . .. e
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(Cold (Ma &
ar . MODI method, water balance
2018 . Arid : Yang,
Basin, S linear and Random Forest (RF) due to
: Steppe . : 2018)
China ) regression models environmental
factors
BWK Landsa | Develop optimal band Difference
(Cold t OLI, | Index (D), Ratio Index (RI), and Rare (Wan
North . Huanji Normalization Index precipitation g
2018 Arid . . etal.,
west Desert ng (NDI) algorithms, and high 2018)
China ) (HJ) 1- Bootstrap-BP neural network evaporation
B CCD model
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2. Materials and methodology:

2-1. Study area:

Kharga is one of seven separate Oases circulated within the Western

Desert of Egypt at about 230 km west of the Nile and about 650 km southwest
of Cairo (Fig. 1). Kharga Oasis experiences the hot desert climate (BWh)
according to Koeppen’s classification. It belongs administratively to the New
Valley Governorate (Hossam Ismael, 2015).

It is located in the southern part of the Egyptian western desert, between

longitudes 30°27°00" N - 30°47°00" E, and between latitudes 22°30°14" -
26°00°00" N. The territory of Kharga depression covers about 7500 square
kilometers (Ibid, 2015) (Figure. 1).
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(Figure.l) Delimitation of <Kharga Oasis

Kharga oasis is extremely hyper arid as it is a part of the dry desert,
where descending air moving from the equatorial region produces a strong air
mass known as the tropical continental region. Wind basically blows from the
north-northwest causing sand dunes to drift, which is a popular issue
encroaching upon settlements, farmlands, and roads. Evidently, the region is the
driest on the earth’s surface, where the incident solar radiation is capable of
evaporating over 200 times the amount of precipitation (Ismael, H., 2016).

The air temperatures range from 44°C in summer to 25°C in the winter and
potential evapotranspiration is as high as 5 mm/d. Annual precipitation normal
does not exceed 2 mm and the rainy days are 0.8 / year. The annual rainfall in
most parts of less than 10 mm. According to the aridity index P/ETP (P =
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precipitation and ETP = potential evapotranspiration, calculated by Penman’s
formula), the arid regions are classified to hyper-arid (P/ETP< 0.03) and arid
(P/ETP =0.03 — 0.20) (Mostafa EI Gamal, 2012).

Ikonos satellite imagery was used to determine the geographical units
affecting soil salinity in Kharga Oasis (Table.2). There is a heavy sand dune
field, the great sand sea, occurring north of Kharga and extends until Siwa oasis
in the north. Dunes enter the oasis by descending through the northern
escarpment particularly from the western side of the plateau (Figure.2). Rates of
dune advance have been documented around 6 m/year (Ghadiry et al., 2012).

(Table.2) The geographical units and its represented area in Kharga Oasis by
2

km
No Geographical units Area %
Km?

1 | Rocky Lands Unit 1766.8 94
2 | Foot Hills Unit 1937.4 10.4
3 | Hills& Mountains 148.3 0.8
4 | Low Slope 1548.5 8.2

5 | Gravelly Plains Unit 382.5 2
6 | Undulating Plains Unit 4804.4 25.5
7 | Plains covered with thin sand | 734.9 3.9

sheets

8 | Semi_ Flat Plains Unit 1495.2 7.9
9 | High Terraces Unit 862.8 4.6
10 | Valley Deposit Unit 402.8 2.1

11 | Decantation Basins Unit 756.7 4
12 | Sand Dune Unit 2414.7 12.8
13 | Sand sheets Unit 625.7 3.4
14 | Nabkhas Units 111.5 0.6
15 | Playa Unit 483.6 2.6
16 | Sabkhas Unit 20 0.1
17 | Agriculture & Urban 318 1.7
Total 18813.8 100
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(Figure.2) The soil profile and geographical units in Kharga Oasis

2.2. Climate data.

All climate data utilized in this study are illustrated by original data,
corresponding to unpublished data from the Egyptian Meteorological Authority
(www. http://ema.gov.eg) to Kharga station from 1940 to 2018. The climatic
data included a solar irradiance, average monthly temperature, average monthly
and annual records of rainfall.
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The time-series included records of varying temporal length and
consisted of data gaps less than 10% data. The series were administered to
quality control and homogenization.

2.3. Satellite data Processing procedure.

To accomplish the regression relationship between soil salinity and
spectral information, one satellite image from the Landsat-8 OLI satellite image
Level 1T product with radiometrically corrected and co-registered to a
cartographic projection and terrain corrections was provided by the USGS Earth
Explorer gateway (http://earthexplorer.usgs.gov/). The image was acquired on
July 05, 2018.

The images (path 176, row 42) and (path 176, row 43) have 28.5 m
spatial resolution and 11 spectral bands including visible (4 bands), NIR (1
band), SWIR (2 bands) and TIR (2 bands) channels of the spectrum in the
Universal Transverse Mercator (UTM) projection. Another digital elevation
model (DEM) from the Shuttle Radar Topography Mission (SRTM) was taken
for the region in order to feature topographic change along the Oasis with regard
to surrounding desert landforms. The DEM is a single band image with a 90 m
spatial resolution and 1 m vertical resolution in the UTM projection (Liping
Yang et al, 2011).

2.4. Methodology used:

After data acquisition (satellite images and salinity measurements), the
research involved: 1- image processing for land cover mapping of cultivated
lands and topography analysis, 2- model generation that best fits for salinity
correlation, and 3- final image classification for salt-affected soils. ERDAS
Imagine 9.4 and ESRI ArcGIS 10.5 Software packages were used to perform
image processing and regression relationships. The research design significantly
depends upon the spectral behavior and discrepancy between cultivated lands
and salt-affected soil (Mohamed E. Hereher and Hossam Ismael, 2016).

The spectral signature detected for pair land cover reveals an apparent
distinction in the visible and infrared ratio of the electromagnetic spectrum.
Green vegetation considerably absorbs red light at the time where salt-affected
soils reflect as much as 50% of the light. On the other hand, although the NIR is
reflected equally from both two land features, the light is reflected much greater
in the SWIR bands from salt-affected soils than from green vegetation. Applying

202558 ol ssall 21 amd | 136 | (aelas¥s ALyl o slall) CsY) B alel) ) Al
v y




da lad) dal g B 4 5l da gl A Bailadd) AAliad) Cig Y il

spectral indices that use two bands could, thus, be effective to discriminate each
of these landforms individually

Although there are 11 spectral bands in the OLI image, six bands have
been selected and stacked together to form a new image for the consequent
spectral analysis in the Specified ranges of bands: B1 (blue), B2 (green), B3
(red), B4 (NIR), B5 (SWIR1) and B6 (SWIR2). SWIR1 and SWIR2 bands have
a wavelength of 1.560 - 1.660 pum and 2.100 - 2.300 um, respectively (Ibid,
2016). The extent of cultivated lands has been estimated by applying the famous
normalized difference vegetation index (NDVI), which is very sensitive to green
chlorophyll and consequently could distinguish green vegetation effectively
from non-vegetated landforms (Poenaru, V e al, 2015).

The NDVI was appealed to the Landsat-8 OLI image in order to
quantify the areal extent of cultivated lands in 2018. As green vegetation highly
correlates with NDVI than other non-vegetated features, it was important to
highlight the NDVI threshold beyond which all the pixels should be counted as
agricultural land.

Regression relationships were supposed to reveal different correlations
with soil salinity. The highest R? statistics from the abovementioned indices
were used to prepare a final salt-affected soil map of Kharga Oasis. The Spatial
Modeler in ERDAS Imagine was operated to perform the model and to produce
a thematic map of salinity distribution as it provides a value of EC for each pixel
in the study area. Soil salinity map was classified in ArcMap Software into five
EC classes: <2 dS/m, 2-4 dS/m, 4-8 dS/m, 8-16 dS/m, and >16 dS/m (Mohamed
E. Hereher and Hossam Ismael, 2016).

The DEM was operated to perform a painted relief map, which was
classified into four elevation unites as < 150 m; 150-300; 300-450 and 450 m <
in ArcMap 10.5. The Landsat-8 OLI image was processed for geometric
correction using image to image rectification procedures through a first-order
polynomial transform algorithm. The atmospheric correction was carried out by
applying the COST Model in ERDAS Imagine depending on the dark-object
subtraction method proposed by Chavez (1996) (Ibid, 2016).
3-Results:

The linear regression modeling was applied to tests the numerical
relation between the calculated soil EC and the spectral bands in Landsat-8 OLI.
Table.3 illustrates the numerical expected models between nine salinity ratios
based on Landsat8-OLlI, and the soil samples tested EC salinity values at the
same time. The SI1 and SI8 models outperformed all other salinity indices
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models and demonstrated the highest R-square (0.99), (0.95) relationship
between the EC salinity measures respectively.

Table. 3 Results of a linear regression analysis of the nine indexes used
to estimate soil salinity values in Kharga Oasis

Salinity index Index range Samples R?
numbers

SI1 (Khan et al,
2005) 0.7-0.5 25 0.99
S12 (Douaoui et al,
2006) 0.6-0.5 25 0.82
SI3 (Douaoui et al,
2006) 1.8-2.4 25 0.37
S14 (Gorji, 2016) 1.4-1.9 25 0.72
SI5 (Elhag, 2016) 0.4-2 25 0.64
S16 (Dehni & Lounis,
2012) -0.4-0.3 25 0.17
SI7 (Mousavi et
a1.2017) 0.03-0.8 25 0.64
S18 (Elhag, 2016) 0.06-0.5 25 0.91
S19 (Elhag, 2016) 0.1-1 25 0.63

In general, it was found that the correlations between the spectral bands
used to extract the salinity ratio range from the very strong correlation to the
relatively low correlation. As shown in Table. 4 The statistical exponential
relationships were developed between the spectral bands in Landsat-8 OLI to
measure the soil salinity. Table.4 shows that the third spectral band correlates
directly and strongly with the fourth, fifth, sixth, and seventh spectral bands,
with a correlation value (0.97, 0.06, 0.89, 0.89) respectively.

The fourth spectral band was associated with a very strong direct
relationship with the fifth, sixth, and seventh spectral bands, where the value of
the relationships are (0.88, 0.94, 0.94), respectively. The fifth spectral band was
associated with a strong direct relationship with the sixth and seventh spectral
bands, with a value of (0.88, 83) respectively, while it was associated with a
relatively low relationship with the second spectral band, where the value of the
correlation was 0.73.
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Evidently, the correlation value between the sixth and the specter ranges
was 0.98, which is a very strong relationship. The sixth spectral band was also
associated with a strong correlation with the third, fourth and fifth spectral
bands, while it was associated with a relatively low relationship with the third
band as it reached 0.7

Table. 4 The correlation matrix to the spectral bans in Landsat-8 OLI

Correlation Band2 | Band 3 | Band4 | Band 5 | Band | Band
matrix 6 7
Band 2 1
Band 3 0.95 1
Band 4 0.83 0.97 1
Band 5 0.73 0.86 0.88 1
Band 6 0.70 0.89 0.94 0.88 1
Band 7 0.71 0.89 0.94 0.83 0.98 1

DEM reveals that Kharga Oasis is formed mainly of three discontinuous
hollows within a plateau terrain (Figure.3): the eastern or Moneira village, the
middle or Al-Zayan plain, which is the greatest, and the western or El-Sherka
plain. The three hollows take place at a level below 150 m from the mean sea
level and cover an area of 2060 km?. The deepest point in the Oasis takes place
at 18 meters above the mean sea level in the middle hollow (EIl Sheihk shallow
lake), where an artificial lake, Lake El Sheikh, was set up from rural drainage.
The northern and eastern escarpments take place at higher than 390 meter above
the mean sea level and the southern edge of the Oasis is a plateau desert that
reaches up to 290 meters above sea level. Cultivated lands are constricted to
these three hollows, where most of the vegetation arises in the middle part.
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(Figure.3) digital elevation model of Kharga Oasis (SRTM30m)

NDVI threshold value is 0.1; all pixels corresponding or higher than 0.1
are gathered and weighed as agricultural areas. The overall area of agricultural
lands as for August 2018 is determined at 604 km? (116,350 acres), represent
32% of the entire Oasis area. The majority of the agricultural lands take place
within the intermediate part of the Oasis. Typical desert vegetation is cultivated
in the Oasis, usually date palms. Seventeen models reveal positive regression
interrelationships and the alternative two (B3/B5 and B4/B3) yield negative
interactions (Table.5). The lowest regression coefficient (R?) is detected for
B6/B3 ratio (R = 0.0689), while the highest regression coefficient (R?) is
performed for the edged cap (TC) brightness transformation (R? =0.4395).

(Table.5): Regression Coefficient models produced to correlate salinity with
OLI pixel values

Spectral Regression Regression
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band/algebra Model Coefficient, R’
B1 (Blue) y= ﬁ;oglx ¥ R?=0.2271
B2 (Green) y= 2?619374X ¥ R? = 0.3435
B3 (Red) y= 1‘11%159" ¥ R? = 0.3923
B4 (NIR) y= 22565774)( ¥ R? = 0.3402
B5 (SWIR1) Y= iégfsx ¥ R? = 0.3727
B6 (SWIR?) y= 121134éjx ¥ R? = 0.3858
B3/B4 y= gﬁgg’fx ¥ R? = 0.2367
B3/B5 y= '0(?'7%%125’( ¥ R? = 0.0462
B3/B6 y= 100%%412)( ¥ R?=0.1375
B4/B3 y= 'fé%%iﬁx ¥ R? = 0.2385
B5/B3 y= f.'??g?lfx ¥ R?=0.0174
B6/B3 y= 8:8;;’58’( ¥ R?=0.0722
B3*B4 y = 4.832x + 211 R®=0.4179
B3*B6 y= fé?;fx ¥ R? = 0.4286
(B6-BL)/(B6+B1) | Y 8_'8;);?( ¥ R? = 0.3729
(B5-B3)/(B5+B3) | Y 8;8:;71)( ¥ R? = 0.3385
TC_Brightness y= :231‘;'5557)( ¥ R®=0.4395
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Accordingly, the TC design is employed to provide the salinity map of
Kharga Oasis; the tested equation is y = 245.57x + 31855, where X is the
estimated soil salinity of each pixel in dS/m and y is the value of that pixel in the
TC model (the brightness component). The salinity map developed from the
represent is illustrated in (Table.7) and (Figure.8) corresponding to IDW
interpolation. The total area of bare and fallow soils is 18813.7 km? (100% of
kharga oasis).

The majority of these soils (85%) have salinity levels of higher than 4
dS/m. Soils having salinity levels of 4-8 dS/m account for 5462.6 km?, those
involving salinity levels of 8-16 dS/m are distributed along 4733.7 km?, the rest
area having salinity levels higher than 16 dS/m account of 6668 km2. The
majority of salt-affected soils occur within the middle hollow. As for the
residual land space of the Oasis, 594 km? (3.3% of the Oasis) is a sandy
topography caped by moved sand dunes, sand sheets and shallow lakes from
cultivated drainage (Table.6).

(Table.6) Spatial interpolation of soil salinity in Kharga Oasis using GIS

Soil salinity IDW Spline Kriging RBF
dS/m Km? % Km® | % Km? % Km? %
NO”(')S_";"”G 504 | 33 |6420.9| 341 | 4751.9 | 253 | 3912.6 | 20.8
Slightly

saline  |2255.3| 12 |1749.1| 9.3 | 43005 | 22.8 | 2785.4 | 14.8
2-4

Moderately
saline 54626 | 24 |3277.8| 174 | 5180 | 275 | 40284 | 214
4-8

Highly
saline  |4733.7| 252 |2072.3| 11 | 3224.9 | 175 | 24517 | 13
8-16

Extremely | coeg | 355 |52935| 285 | 1356.6 | 7.2 | 56357 | 30
saline > 16
Total 18313' 100 18313' 100 |18813.7 | 100 | 18813.7 | 100

Spatial interpolation is a fundamental feature of many GIS. It is a
method for predicting values of a variable at locations that have not been
examined. Maps with isolines or color-smoothed images are usually the visual
output of such a process and the maps play a crucial role in decision- making.
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However, an interpretation of the basic assumptions and methods applied is a
key to the spatial interpolation process. And geostatistics gives the formal
mathematical support for such a task (M.M. Jordan et al, 2004).

In this study, we focused on the spatial modeling of EC, extractable
sodium, and electrical conductivity. These variables are connected to soil
salinity and their spatial estimation and forecast are of essential experimental
concern for input to further cultivated or natural schemes. The geostatistical plan
for our task is outlined below, followed by the real data interpretation cited as a
case study (Table.8).

Alizade Govarchin Ghale, et al (2017) pointed out that many salinity
indexes are offered for Landsat images to determine the interpolation of salt-
affected soils such (Goossenes and Vanranst, 1996; Al-Khaier, 2003; Abbas and
Khan, 2007; Abdul-Qadir and Benni, 2010; Abbas et al., 2013; Allbed and
Kumar, 2013; Ahmed and Al-Khafaji, 2014; Arnous and Green, 2015), and
among these the most widely used approaches to monitor soil salinity changes
using remote sensing data is IDW (figure.4).

The majority of these soils (85%) have salinity levels of higher than 4
dS/m . Soils having salinity levels of 4-8 dS/m account for 5462.6 km?, those
having salinity levels of 8-16 dS/m are distributed along 4733.7 km?, the rest
area having salinity levels higher than 16 dS/m account of 6668 km?. White salt
crusts have been recognized apparently in areas were just left between
cultivation that means that the hostile climatic conditions in terms of high
temperatures and excessive evaporation are the driving forces for this brilliant
desertification. The influence of this serious salinization includes the devastation
of soil natural properties and even mortality of domestic vegetation, e.g. date
palms.
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(Figure.4) Spatial interpolation of soil salinity in Kharga Oasis using GIS

4. Discussion:
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The results of this study have been indicated that the Landsat 8 satellite
images have the possible to outline the regional dissemination of soil salinity to
Kharga oasis. The opportunity of eleven several spectral bands in the visible and
infrared spectra could use to identify spectral signature of salt-affected soils
from other land covers. These eleven spectral bands in the OLI satellite images
visualized high interconnection with soil salinity, particularly the red and the
SWIR bands.

In Kharga oasis where typical desert vegetation, date palms are grown,
there is a likelihood for the occurrence of substantial land areas between palm
trees as bare and hence, are prone to salinization and initiation of salt crusts.
These crusts are exposed to be remotely sensed from space, the case which is
diagnosed by the present study.

The occurrence of the Oasis above this water aquifer makes a water table
close to the surface, hence triggering salinization. Because it is one of the most
promising areas, it is expected that the Kharga Oasis will accommodate about
1,000,000 persons, which could impact the non-renewable water supply. Water
needs for agriculture could not be secured, which would negatively influence
soil degradation as water requirements for leaching salts from the soil are not
sufficient. Soil salinization is not only the environmental hazard induced by
climate conditions dominating Kharga region, sand encroachment is another
potential threat to farmlands, settlements, and infrastructure (Figure.5).
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(Figure.5) Ground pictures of Kharga Oasis; a) and b) It turns out that the
high level of the groundwater greatly affects the agriculture with excessive
salinity, ¢) and e) the encroachment of sand dunes upon cultivated field, d) the
accumulation of salts by evaporation of water from a drainage canal, f) a salt
crust at a barren soil area, and g) the dunes threat to agricultural land from
digital globe, Google Earth Pro 5 July 2018.
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The current study reached these results based on an analysis of climatic
elements during the period (1940 - 2018). To illustrate this further, the soils in
kharga Oasis exposed and subjected to direct solar radiation, variation, changes
in air temperatures and relative humidity, where air temperature reaches up to
47°C during days' time of summer months (June—July -August) and hauls down
to about 14°C during nights time during the same months and varies from less
than 5°C during nights time during the winter months (December-January-
February). The relative humidity varies from about 57 % during nights time
during the winter months (December-January-February) and hauls down to less
than 20 % during days' time of the same months and varies from about 52 %
during nights time during the summer months (December-January-February)
and hauls down to less than 14 % during days' time of the same months in
Kharga station (Table. 7).

(Table.7) the normal values of climate elements and its corresponding
anomalies during the three distinguished periods (1940-1965, 1965-1990 and
1990-2018) at Kharga station.

Normal Anomalies
Elements 1940-
2018 1940-1965 1965-1990 1990-2018
Mean temperature (OC) 254 -0.85 +0.3 +0.4
Minimum temperature 12 -1.20 - 0.80 -0.75
(0
Maximum temperature 41 +0.9 +1.45 +1.20
(0
Max Absolute 52 - - -
temperature (OC)
Min Absolute 2 - - -
temperature (OC)
Rainfall amount (mm) 10.2 -1.4 -1.2 -.08
Sunshine duration (%) 88.4 +1.09 +1.02 +1.1
Wind speed (kt) 8.6 +0.25 +0.30 +0.35
Evaporation (mm per 12.3 +0.04 +0.08 +0.1
day)
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Relative humidity (%) 57 +2.30 +2.0 +2.45

Cloud amount (oktas) 1.70 +0.25 +0.45 +0.5

Egyptian meteorological authority, unpublished data
The solar radiation reaches Kharga Oasis lowest intensity in the winter.
The rate increases gradually about (18.5 MJ / m 2 / day) in Kharga station and
about (19 MJ / m 2 / day) in Kharga station. As a result of the apparent
movement of the sun from the tropics during the summer to the equator during
the spring, which leads to an increase in solar radiation during the spring
months, where the amount of solar radiation at Kharga station is ( 27.5 MJ/ m 2
/ day) , while in Kharga station is (27.6 MJ / m 2 / day) (Ismael, H., 2015). The
summer solar radiation doubles that record during the winter, where the amount
of solar radiation at Kharga station about (29.7 MJ / m ? / day) in summer. The
sun apparent movement to the south during the autumn leads to decrease the
amount of solar radiation of the Kharga oasis, it's about (22.3 MJ / m %/ day).

The air temperature differs, chiefly in the summertime; when it may
range from 7 °C at night, to 52 °C during the day. While the winter temperatures
in Kharga oasis do not oscillate so wildly, they can be as low as 0 °C at night,
and as high as 25 °C during the day. The absolute temperature is one of the most
important indicators of the reality of the climatic conditions that characterize
Kharga oasis. To clarify this further, Egypt’s formal heat record is 50.3°C
measured by British colonial officials at Kharga Oasis on June 9, 1961.
Wherefore, Kharga oasis is part of the most hyper-arid place in the world. There
is essentially no precipitation. Winds are predominant from the north. The
temperature ranges from 5 °C to 26 °C in winter and from 26 °C to 45 °C in
summer (Ismael, H., 2015).

Wind speed tends to be low in August, increases gradually from
November to January, and reaches a peak from March to May causing dust
storms famously known as “El-Khamsin”. The annual mean value of relative
humidity is 39.3%. It is very much lower at noon than at either morning or
evening. The atmospheric precipitation as rainfall is extremely scarce and
insignificant (~1 mm/yr).

Consequently, the category of extremely arid climate, with a category
less than 0.05, represents about 41% of the total Oasis area. The dry climate
category 0.05 to less than 0.2 covers about 21.7%. While, the semi-humid and
humid climate categories represent about 18.6% of total area of the Oasis,
according to value climate index (Table.8).
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(Table.8) Climate type index according to geographical distribution in Kharga

Oasis
Category Climate type Indices Area km? %

1 Hyper Arid <0.05 7827.5 41.6
2 Arid 0.05-0.2 4077.4 21.7
3 Semi-Arid 0.2-0.5 3406.5 18.1
4 Semi-Humid 0.5-0.65 1602.1 8.5
5 Humid > 0.65 1900.3 10.1

Total 18813.7 100

The interaction coefficient was applied to analyze the strength of the
temperature relations with time. A linear trend was applied to find out the
temperature trends from the period1940 to 2018.

(Table. 9) Linear trends (in °C/decade) computed for annual and seasonal
temperature in Kharga station
(1940-2018). the associated 95% confidence intervals

Time-scale Linear trend | 95% confidence
(°C/decade) intervals
Annual 0.37 (0.054/0.155)
DJF (Winter) 0.47 (0.083/0.174)
MAM (Spring) 0.36 (0.067/0.191)
JJA (Summer) 0.49 (0.086/0.189)
SON (Autumn) 0.13 (0.018/0.152)

Annual temperature deviations computed from 1940 to 2018 demonstrate a
definite rising trend of 0.35°C/decade, statistically significant at the 99% level
(Table. 9). This is rational with the Kharga temperature increase characterized
by (Domroes et al, 2005, Hossam Ismael, 2015, and Climatic Research Unit,
University of East Anglia 2018) for the period 1940-2000. Moreover, seasonal
temperature anomalies also display a distinct rise of 0.470 °C/decade for winter
(DJF); 0.360 °C/decade for spring (MAM); 0.490 °C/decade for summer (JJA);
and 0.130 °C/decade for autumn (SON), all statistically considerable at the 99%
level (Table 9). The summer and the spring are the seasons with the greatest
ranks of change while winter and autumn show lower trends.

Mostly, the soil temperatures in Kharga oasis have not been studied as
much as other climate elements, such as air temperature, solar radiation and
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rainfall, because the data are not vastly obtainable for spatial or temporal
coverage (Budong Qian et al, 2011). For the current study, Kharga station
provided daily soil temperature data at depths of 5, 10, 20, 50, 100, and 150 cm,
beginning between 2006 until now. We had some missing data so we selected
the mean annual soil temperature at depth of 10 cm between 2012 and 2018
from this station data set.

It appears however that Annual mean soil temperatures between 18 and
38 °C, and it has been clear from the analysis of (figure.6), that the soil
temperature decreases in the margins of the Kharga Oasis, which represents the
highest areas in the level, while the flat and low areas are affected by a large
increase of temperature and high amount of evaporation.
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5-Conclusions:

The existence of Kharga Oasis in a hyper-arid desert is a direct reason for
soil salinization due to the climate conditions and scarcity of water balance.
Although groundwater is available, excessive discharge due to the expected
development of the region could diminish water required to sustain agriculture
and soil resources. Salinization in Kharga is attributed mainly to the nature of
the Oasis, which is lower than the surrounding desert. The consequence of this is
that the Oasis floor is close to the groundwater allowing evaporation of water
and concentrations of salts at the soil surface leading to primary salinization.

Poor drainage, which results in water logging problems, also concentrates
salts at the soil surface promoting secondary salinization. This study confirms
that the available and free imagery can assist in monitoring the regional
distribution of surface soil salinity. Detailed soil studies are recommended to
characterize their physico-chemical characteristics and major salt type.
Recognizing the system and motivating demands of mitigate the salinization in
Kharga oasis could help develop appropriate administration of water sources,
soils, and agricultural areas.

It was clear from the present study that remote sensing data is a powerful
and effective tool in innovating of soil salinization maps. Where the study
concluded that the best index used in extract soil salinity from Landsat-8 OLI
satellite images is the first index S1, which is the Sqrt the second spectral band x
the fourth spectral band, where the value of the coefficient relation was 0.99,
immediately followed by the eighth index, where the value of the coefficient of
relation was 0.91.

Several important geographical factors caused the soil salinity problem in
kharga oasis, the climate was the most significant factor, where the Kharga
Qasis is located climatically in the dry, high-temperature and highly evaporative
range, so the salts are concentrated. Among the geographical factors that cause
soil salinity of Kharga Oasis is the anthropogenic influence, which comes
second in the effect, where irrigation is spread by flooding the cultivated lands,
and as a result of the topography of the lower Kharga Oasis, the salt-bearing
water collects and evaporates, leaving concentrated salts in the soil, in addition
to seepage saltwater from places Adjacent to the soil and agricultural land, in
addition to following primitive irrigation patterns and useless agricultural policy.

About Eighty-five percent of bare and fallow soils in the Oasis have
salinity values higher than 4dS/m. The impacts of this salinization are
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manifested in soil and vegetation. It has been found that the area of extremely
saline occupies an area of 6668 km2 or about 35.5% of the total area of kharga
Oasis. Also, it was revealed through the study of the spatial distribution of soil
salinity that the high salinity category is about 22.2%, and occupies 4733.7 km?,
and the moderate and low salinity categories include 24% and 15.3%, covers
about 5462.6 km2 and 2820 km?’ of Kharga Oasis respectively. The climate,
anthropogenic factors and the low-level existence are the direct causes of soil
salinization. Quantification of the extent of soil salinity is crucial for proper
management of the region.

The old irrigation regimes in Kharga oasis are one essential reason for
human-induced soil salinization. The lack of a well-developed drainage system
had led to an enhanced water table and by time water had recharged the deepest
area in the Oasis to serve as a big artificial lake, Lake EI-Sheikh. Uncontrolled
drainage has still caused significant water-logged areas. Barren and fallow soils
of Kharga are generally saline, where their EC values are more than 4 dS/m.

Ultimately, it has been concluded that the soil salinization hazard was
spreading
due to the climate conditions, widespread irrigation system, and internal
drainage. It has also been demonstrated that the slope degree of the land
becomes a significant impact on the salinization and had an expulsive
relationship between them. Based on the results of the study, it is recommended
that extending the use of remote sensing data, especially high-spatial and
spectral resolution ones, in studying soil properties, it is considered effective and
powerful techniques and tools in studying and monitoring soil salinity problem.
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Abstract

occupies an area of 6668 km2 or about 35.5% of the total area of Kharga Oasis. Also, it was
revealed through the study of the spatial distribution of soil salinity that the high salinity

category is about 22.2%, and occupies 4733.7 km2, and the moderate and low salinity

categories include 24% and 15.3%, covers about 5462.6 km2 and 2820 km2 of Kharga Oasis,
respectively. The climate, anthropogenic factors, and the low-level existence are the direct
causes of soil salinization in Kharga Oasis.

salinization, and as a result, 1t IS becoming a serious economic and environmental concern In
New Valley governorate. Detecting and monitoring soil salinization in Kharga Oasis is
accordingly important to support decision-making procedures for lessening adverse effects of
land degradation due to the salinization, especially to kharga oasis, as one of the promising
regions for agricultural development in Egypt. Clearly, satellite data-based technologies
supply cost-efficient, rapid, qualitative spatial data on soil salinity. Kharga Oasis in the
Western Desert of Egypt is experiencing pronounced prevailing climatic condition induced
geo-hazards such as soil salinization. The present study aimed to study the effect of prevailing
climatic conditions on detecting and monitoring soil salinization of Kharga Oasis. To achieve
the study aims, the present study used operating remote sensing and GIS techniques, soil
sampling synchronized with a satellite image from the Landsat-8 Operational Land Imager
(OLI) Level 1T product during July 2018 have been analyzed by regression correlation
analysis. The present study was based not only on raw climate data and satellite images but
also on field investigations of Kharga Oasis. About Eighty-five percent of bare and fallow
soils in the Oasis have salinity values more than 4dS/m. The impacts of this salinization are
illustrated in soil and vegetation. It has been found that the area of extremely soil saline
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